Exam Calculus 2

9 April 2018, 9:00-12:00

The exam consists of 6 problems. You have 180 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $[6+6+3=15 \text{ Points}] \text{ Let } f: \mathbb{R}^2 \to \mathbb{R} \text{ be defined as}$

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

- (a) Is f continuous at (x, y) = (0, 0)? Justify your answer.
- (b) For which unit vector $\mathbf{u} = v\mathbf{i} + w\mathbf{j}$ with $v^2 + w^2 = 1$, does the directional derivative $D_{\mathbf{u}}f(0,0)$ exist?
- (c) Is f differentiable at (x, y) = (0, 0)? Justify your answer.
- 2. [7+8=15 Points.] Let $u: \mathbb{R}^3 \to \mathbb{R}$, $(x,y,z) \mapsto u(x,y,z)$ be a C^2 function. By defining spherical coordinates according to $(x,y,z) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$, the function u(x,y,z) can be considered as a function $f(\rho,\theta,\phi)$.
 - (a) Express $\frac{\partial f}{\partial \theta}$ in terms of partial derivatives with respect to x, y and z of the function u.
 - (b) Conversely the function $f(\rho, \theta, \phi)$ can be considered as a function u(x, y, z). Suppose that the function f depends only on ρ (i.e. f is independent of θ and ϕ). Show that in this case

$$\frac{\partial^2}{\partial x^2}u(x,y,z) + \frac{\partial^2}{\partial y^2}u(x,y,z) + \frac{\partial^2}{\partial z^2}u(x,y,z) = \frac{2}{\rho}f'(\rho) + f''(\rho).$$

3. [4+4+7=15 Points.] Consider the helix parametrized by $\mathbf{r}:[0,2\pi]\to\mathbb{R}^3$ with

$$\mathbf{r}(t) = a\cos t\,\mathbf{i} + a\sin t\,\mathbf{j} + bt\,\mathbf{k},$$

where a and b are positive constants.

- (a) Determine the length of the helix and its parametrization by arclength s.
- (b) At each point on the helix, determine the unit tangent vector \mathbf{T} and the curvature of the helix κ .
- (c) Let N be the unit vector with direction $\frac{d}{ds}T$ and let B be the unit vector defined as $\mathbf{B} = \mathbf{T} \times \mathbf{N}$. Compute B and show that $\frac{d}{ds}\mathbf{B} = -\tau \mathbf{N}$ for some $\tau \in \mathbb{R}$. Determine τ .

- 4. [3+6+6=15 Points] Let S be the unit sphere in \mathbb{R}^3 defined by $x^2+y^2+z^2=1$.
 - (a) Compute the tangent plane of S at the point $(x_0, y_0, z_0) = (1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3})$.
 - (b) Use the Implicit Function Theorem to show that near the point $(x_0, y_0, z_0) = (1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3})$, the sphere S can be considered to be the graph of a function f of x and y. Compute the partial derivatives of f with respect to x and y and show that the tangent plane found in (a) coincides with the graph of the linearization of f at $(x_0, y_0) = (1/\sqrt{3}, 1/\sqrt{3})$.
 - (c) Use the method of Lagrange multipliers to determine the points on S where $g(x, y, z) = xy^2z^3$ has maxima and minima, respectively.
- 5. [5+5+5=15 Points] For constants $a, b \in \mathbb{R}$, define the vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ as

$$\mathbf{F}(x, y, z) = ax \sin(\pi y) \mathbf{i} + (x^2 \cos(\pi y) + by e^{-z}) \mathbf{j} + y^2 e^{-z} \mathbf{k}.$$

- (a) Show that **F** to be conservative requires $a = 2/\pi$ and b = -2.
- (b) Determine a scalar potential for F for the values of a and b given in part (a).
- (c) For the values of a and b given in part (a), compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve parametrized by

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + \sin^2 t \,\mathbf{j} + \sin(2t) \,\mathbf{k}$$

with $t \in [0, \pi/2]$.

6. [8+7=15 Points] For r > 0, let S_r denote the sphere of radius r with center at the origin, oriented with outward normal. Suppose $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is of class C^1 and is such that

$$\oint \int_{S_r} \mathbf{F} \cdot d\mathbf{S} = ar + b \tag{1}$$

for fixed constants a and b.

(a) Compute

$$\iiint_D \nabla \cdot \mathbf{F} \, \mathrm{d}V,$$

where $D = \{(x, y, z) \in \mathbb{R}^3 \mid 25 \le x^2 + y^2 + z^2 \le 49\}.$

(b) Suppose that $\mathbf{F} = \nabla \times \mathbf{G}$ for some vector field $\mathbf{G} : \mathbb{R}^3 \to \mathbb{R}^3$ of class C^2 and Equation (1) holds for any r > 0. What conditions does this place on the constants a and b?